16 research outputs found

    Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

    Get PDF
    During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments

    Tizanidine does not affect the linear relation of stretch duration to the long latency M2 response of m. flexor carpi radialis

    Get PDF
    The long latency M2 electromyographic response of a suddenly stretched active muscle is stretch duration dependent of which the nature is unclear. We investigated the influence of the group II afferent blocker tizanidine on M2 response characteristics of the m. flexor carpi radialis (FCR). M2 response magnitude and eliciting probability in a group of subjects receiving 4 mg of tizanidine orally were found to be significantly depressed by tizanidine while tizanidine did not affect the significant linear relation of the M2 response to stretch duration. The effect of tizanidine on the M2 response of FCR is supportive of a group II afferent contribution to a compound response of which the stretch duration dependency originates from a different mechanism, e.g., rebound Ia firing

    A rigorous model of reflex function indicates that position and force feedback are flexibly tuned to position and force tasks

    Get PDF
    This study aims to quantify the separate contributions of muscle force feedback, muscle spindle activity and co-contraction to the performance of voluntary tasks (“reduce the influence of perturbations on maintained force or position”). Most human motion control studies either isolate only one contributor, or assume that relevant reflexive feedback pathways during voluntary disturbance rejection tasks originate mainly from the muscle spindle. Human ankle-control experiments were performed, using three task instructions and three perturbation characteristics to evoke a wide range of responses to force perturbations. During position tasks, subjects (n = 10) resisted the perturbations, becoming more stiff than when being relaxed (i.e., the relax task). During force tasks, subjects were instructed to minimize force changes and actively gave way to imposed forces, thus becoming more compliant than during relax tasks. Subsequently, linear physiological models were fitted to the experimental data. Inhibitory, as well as excitatory force feedback, was needed to account for the full range of measured experimental behaviors. In conclusion, force feedback plays an important role in the studied motion control tasks (excitatory during position tasks and inhibitory during force tasks), implying that spindle-mediated feedback is not the only significant adaptive system that contributes to the maintenance of posture or force

    Compensation for Changing Motor Uncertainty

    Get PDF
    When movement outcome differs consistently from the intended movement, errors are used to correct subsequent movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes. We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution. Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of unambiguous information regarding the anisotropic distribution of actual motor errors

    Predictions not commands: active inference in the motor system

    Full text link

    Reflex circuits and their modulation in motor control: a historical perspective and current view

    No full text
    Sensorimotor reflexes have long been, and continue to be, an area of tremendous research in movement neuroscience. Here I aim to provide an account of some studies that have been crucial in advancing our understanding of the organization of reflex circuits, their function and their modulation during motor control. I review research ranging from early experiments in reduced animal preparations that investigated the basic building blocks of reflex circuits to more recent studies in humans that demonstrate remarkable tunability of reflexes in response to variety of contingencies related to the task, the body and the environment. By providing such an integrated account of the historical aspects and current view on reflex function, I attempt to bring out the stunning complexity of reflex machinery, as well as the incredible adaptability of this machinery despite its underlying complexity.by Pratik K. Muth
    corecore